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Abstract

A detailed analysis of two of the dynamic maneuvers, the pushover and elevator doublet, from the NASA/FAA
Tailplane Icing Program are discussed. For this series of flight tests, artificial ice shapes were attached to the leading

edge of the horizontal stabilizer of the NASA Lewis Research Center icing aircraft, a DHC-6 Twin Otter. The pur-
pose of these tests was to learn more about ice-contaminated tailplane stall (ICTS), the known cause of 16 accidents

resulting in 139 fatalities. The pushover has been employed by the FAA, JAA and Transport Canada for tailplanc
icing certification. This research analyzes the pushover and reports on the maneuver performance degradation duc to

ice shape severity and flap deflection. A repeatability analysis suggests tolerances for meeting the required targets of
the maneuver. A second maneuver, the elevator doublet, is also studied.

Nomenclature

air (ft) Altitude

Cn_ Elevator Hinge Moment Coefficient

Cl_c A/C Coefficient of Lift
CLtai I Tail Section Coefficient of Lift

Cm A/C Pitching Moment Coefficient
CT Thrust Coefficient
FYE (Ibs) Yoke Force

Nz (G) Vertical Acceleration

q (deg/s) Pitch Rate
theta, 0 (deg) Pitch Angle
t (see) time

V,VIAS (kts) Indicated Air Speed
Vs (kts) Stall Speed

etA/C, alpha (deg) A/C angle-of-attack
_T, TAOA (deg) Tailplanc angle-of-attack
BE, delE (deg) Elevator Detlection Angle

8F, delF (deg) Flap Deflection Angle

Introduction

Ice-contaminated tailplanc stall (ICTS) has been identi-
fied as the cause in a number of aircraft incidents and

accidents. This problem is typically manifested upon

final approach, after flaps are extended. The yoke might
snatch forward out of the pilot's hands and cause the
nose of the aircraft to pitch down.

('_pyri_hl _) 19_)_ by tilt' AIAA. II_c Nq_ copyright

is as>,erlcd in the United Stales under Title 17.

U.S. ('ode The U,S. (;ovcrnmenl has a to)ahy

It'co licen_' to cxdr¢i_, all ri_2111s tlllder tll_' cop)

ri,dht dailncd herr'in 10r (illvernlllelll ptlrl_lX's All

t_lhcr rights are reselvcd by the copyright o_ nor

Ice contamination on the leading edge of the tail
reduces both the stall angle of attack and the amount of
downward lift available. For most aircraft, the center of

gravity is forward of the wing center of lift. Thc result-

ing pitch down moment must be countered by the hori-
zontal tailplane, which provides a downward or nega-
tive lift (see Figure 1), When flaps are extended, the

required downward lift of the contaminated horizontal
tail might exceed its diminished capacity. If the llow

around the tail separates fully, the nose might pitch
down suddenly.

This problem has been known lor some time.

Trunov and Ingleman-Sundberf' 2 conducted both wind
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Figure 1. Schematic of aircraft with vertical component
lbrce and moment balances. Note: the contributions to
the momen! balance from the horizontal forces are nol
shown.
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tunnel and flight tests on swept tailplanes with various

ice shapes. They documented the aeroperformance deg-

radation: the decrease in lift, increase in drag and in-

crease in elevator hinge moment.

The NASA/FAA Tailplane Icing Program was
constructed around these same concerns. 3'4 The objec-

tives were to (1) develop a body of knowledge and the-

ory behind the critical degradation of the longitudinal

stability and control, and (2) understand the dynamics

and aerodynamics of various maneuvers that might be

used for FAA certification. The final stage of this pro-

gram, after icing and aerodynamic wind tunnel tests,

was to conduct flight tests using the NASA Lewis Icing
Research Aircraft, a modified DHC-6 Twin Otter (see

Figure I). Both steady state and dynamic maneuvers

were flown with various artificial ice shapes attached to

the tail. This report will focus on two of the dynamic
maneuvers: the pushover and the elevator doublet.

The pushover to zero-G has been employed as a
horizontal tailplane certification maneuver. Some con-

cerns regarding this maneuver include (1) the challenge

of accurate execution, (2) the necessity to design the

fluid systems (e.g., hydraulics, fuel & oil) to operate

adequately in the zero-G environment, and (3) how well

this maneuver assesses susceptibility to tail stall. The

other maneuver, the elevator doublet, is typically flown
for system identification. In addition, it was used to

discriminate sensitivity to tail stall.

To test for tailplane stall, it is generally necessary

to achieve the high angles of attack dynamically. The
tailplane angle of attack, ctt, during maneuvering, is

given by (see, e.g., Etkin, p57, Eq. 3.2,12a5):

O_t =O_t0+A_t =_t0 +A_w 1- -I. ,
V

where 5,0 is the trim tailplane angle of attack, Ao_ is the

change due to the dynamic maneuver, A_ is the
change in wing angle of attack, and l, is the distance
from the CG to the tail center of lift. For the Twin Ot-

ter, the (0e/Oa) values vary from 0.5 - 0.7. The angle of

attack at the taiiplane may be dynamically increased

primarily by increasing the pitch rate or reducing the

speed. For ease of discussion later, it is prudent to in-
troduce some terminology. Let a pushover maneuver

where the values of (a,0+Ao_) are thr from o_,,,H, be
considered a "'non-critical" pushover. Likewise, denote

a case where the values of (o_0+Aa,) are close to o__,,,n

as a "critical" pushover. For a target pitch rate. a non-

critical pushover therefore occurs at zero flap deflection

and high speed. Conversely, a critical case occurs for a

full flap deflection and low speed.

This report investigates the pushover maneuver,

i.e., what it is and what information it yields. It also

investigates another elevator-driven maneuver, the ele-

vator doublet. Finally, this report provides comment on

the precision and accuracy of one pilot's ability to

achieve the target parameters of the pushover.

Experimental Procedure
Flight Card

Using the DHC-6, research flights were conducted with

artificial ice attached to the leading edge of the hori-

zontal tailplane. In addition to a clean leading edge

baseline (Ba) case, three ice shapes, depicted in Figure

2, were flown. Two of these shapes were grown in the

NASA Lewis Icing Research Tunnel using FAR 25,

Appendix C conditions. In increasing order of severity,

these included an inter-cycle residual ice (RI) and a

failed boot (FB) ice shape. The third and most critical

shape, as determined by wind tunnel tests conducted at

The Ohio State University's 7'xlO' wind tunnel, was a

2-D shape used in previous stability and control flight

tests (S&C). Additional primary parameters for each of

the steady state and dynamic maneuvers were flap de-
flection, thrust setting and airspeed. The flaps were

deflected 0 °, 10°, 20 °, 30 ° & 40 °. The power was set

for cruise, Cr = 0.1. Three or four speeds were selected

from the range Vs to 1.6 Vs. In all, this program gener-

ated 2000 test points and 14 gigabytes of data.

Data Acquisition

The on-board data system recorded 95 channels of data
at I(X) Hz. Included were inertial data (accelerations

and angular rates), air data (aircraft angles, speed, tem-
perature, altitude), control surface deflections and cor-

responding pilot forces, engine parameters, and 62

pressure measurements at the tailplane. These included
three five-hole probes located along the span, and a

vcle IRT ShaDe

I • v:135 kts, alpha---2.9 o

• LWC=O.Sg/mP, MVD=2OIam

• To:,-4* C, time=15 mtn, with

-"---..._oot cycle every 3 minutes

BOOt IRT ShaoQ

135 kts, alpha=--2.9 o

C=0.Sg/m n, MVD=2Olzm

=-4 ° C, lime=22 min

..........S'&C Ice ShaDe

• derived from in-flight photos

and ADS-4
• used in IXsvious stability &

"'--. control flight tests

Figure 2. Schematic of ice shapes tested on the Twin
Otter horizontal stabilizer.
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belttomeasurethestaticpressuredistributionalongthe
chord.Threevideocameraswerealsoemployed:oneto
monitorthepilotactionsandreactions,oneto record
thehorizon,andoneto observetuftsplacedontheun-
derside(suctionsurface)ofthetailplane.

Maneuver Description
The Pushover

The pushover maneuver was similar to those described

in current aircraft certification programsJ' It required

that the pilot ( I ) hit a specified vertical acceleration, N.,

(or pitch rate, q) at (2) a target velocity, V, and (3) as
the nose of the aircraft tracked through the horizon. To

achieve these targets, the aircraft flew in a parabolic

trajectory similar to those that simulate micro-gravity.

The following description of the maneuver can also be

seen in the time histories presented in Figure 3. To start,

the aircraft was configured by fixing the flap deflection

and thrust, then trimmed in straight and level flight at

the target speed. The corresponding pitch angle, {9, was

noted. Beh)re initiating the maneuver, the pilot must

first dive to build speed, and then pull up to bleed speed

and increase the pitch attitude prior to pushover. To
enter the maneuver itself (maximum N- at t = 16, 31 &

42s), the pilot pushed forward on the yoke (step in-
crease in fiE, decrease in FYE) five to ten knots above

the target speed. With this push came a rapid decrease

in N- from 2-0G. Note the velocity continued to de-
crease for some time. With the elevator fixed forward,

the pilot attempted to hit the N:, V and 0 targets. After
the targets were achieved, or when the flap extension

speed, VVE, was approached, the yoke was pulled back.

The pass/fail criterion for this maneuver concerns
whether or not a control force reversal (CFR) is experi-

enced. This would most likely occur while fiE is fixed

at its constant maximum. Note that there are two inputs

to the torce measured at the yoke: (I) the pilot input

and (2) the pressure field around the elevator. Should

the control force change (lighten) while the elevator

position is held constant, the change must be due solely

to a changing pressure field, e.g., flow separation.

For this program, each test point contained three

parabolas tor three pushovers. For the Twin Otter, these
parabolas typically lasted up to 20 seconds with a

maximum of five seconds in micro-gravity. The push-

over was flown |br all ice shapes, flap deflections and

airspeeds. For the Failed Boot and S&C ice shapes,

however, the flap deflection was limited to 5F=20 °

because CFRs were experienced at the lower speeds.

The data presented in Figure 3 are a limited set of

the time histories for one of the non-critical pushover

test points: Residual Ice shape with _F = 0°. The targets
were N-= 0G, V = 100kts = 1.5Vs and 0= 4 °. The third

pushover (t = 4%) came closest to the targets. For all
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6500 ....... _ _

o 10 2o 30 40 so 60 time Is)

Figure 3. Non-critical pushover time histories: Resid-
ual Ice, SF=0 °, V= 100kts = 1.5Vs.

three pushovers during this test point the pilot over flew

the speed. However, he did track through the horizon (0
= 3°) at the minimum q or N-. Note how closely the

pitch rate mimics the vertical acceleration. This con-

figuration easily passed the certification control force

criterion: while the elevator was trailing edge down
(TED: 617,> 0°), the push force (FYE < 0) remained

fairly flat. The most negative _ was -5.4 °, compared to

the steady IG flight value of 0 °. Moreover, for this non-

critical case, the _ and CH,, traces are highly correlated

(r = 0.98). This suggests that as the yoke was pushed

forward (CH,, decreased) the angle of attack at the tail-

plane also decreased with the nose down command.
Likewise, when the pilot pulled the yoke back. _ was

again able to match. The high degree of correlation

between the aircraft angle of attack and lift coefficient

indicates that the maneuver took place entirely within

the linear region. As expected, the Ct.,,u value was es-

sentially constant with the exception of a transient re-

sponse to the elevator deflection, and oppositely corre-
lated to C,,,.

NASA/TM--1999-208849 3
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Figure 4. Critical pushover time histories: Failed Boot,
6F = 20 °, V = 55 kts = 1.0 Vs.

For comparison, a set of critical case time histories

is presented in Figure 4. These plots are for the Failed
Boot at &F = 20 °, V = 55 kts = 1.0Vs. Because of the

flap setting and low speed, the minimum N: was 0.2G;

the target 0 was -1.8 ° (as determined from the steady

state trim test point). The second pushover (t = 35s)

came the closest to the target values. It is interesting to

note that whether or not the control force for this push-

over reversed is not as easy to determine as for the

other two. which were achieved at slightly lower

speeds. Without instrumentation, it would be up to the
pilot to make the determination.* Also note the lack of

correlation (r = -0.03) between c_ and Cn_ for this criti-

cal pushover. When the yoke was pushed forward (t =

17, 32 & 47s), they started out together but diverged

with the control force lightening. It seems that the cor-

relation between _ and Cne, or lack thereof, could also

indicate an impending tail stall condition. However,

since these involve higher level measurements (_) and
calculations (CH_ from FYE), further examination of

"The control force did cross the neutral axis 0.10s before the elevator
returned TEU. At t = 0s. however. FYE = -1.8 Ibs; this reference point
was crossed 0.13s before the elevalor returned TEU.

this effect was not pursued. As with the non-critical

pushover, a and Ct.,, are still highly correlated. The

curves do depart, however, and the biggest departures
occurred when the elevator was deflected TED. At &F =

20 °, both _ and CL,,,i_ became more negative. The

variations in C,, nearly doubled from the L_F= 0° case.

The Elevator Doublet

The elevator doublet consisted of four step inputs to the

elevator initiated from straight and level flight. Each

input was intended to excite the longitudinal short pe-

riod response. This maneuver demonstrates the effect of

tailplane ice on the dynamic longitudinal stability and

control, and is typically associated with parameter esti-
mation studies.

The aircraft was trimmed for the target flap deflec-

tion, speed and power. As illustrated in Figure 5, one

series of negative and positive deflections were made,

and immediately followed by a second series.

Z-,4 _ " z

0 ; ./

118

100 -

90b

I tO f"

0

87 - _ - _ - _ylo
o! /\ ...../L.-.,---- -- ro
_81 ---J 10

8 --delE _ 30

I_............................. _
4] _,._t_. /,-e_ _ Too2

L L_o_

i CL_ ,_

03

o _ . it ,- -,,--- Cm
.,m L .... ; - --. _ -J" -- - ! E

_45 ± _D3

s,=+ : -i '
560O _L _ _ i ,
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Figure 5. Non-critical elevator doublet time histories:
Baseline, L_F= 0 °, V= 100 kts = 1.5Vs.
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All iceshapes,flapdeflections,andspeedswere
Ilown.FortheFailedBootandS&Ciceshapes,how-
ever,theflapdeflectionwaslimitedto t_F = 30 ° be-

cause the pitch response was highly (dangerously) un-

damped, and CFRs were experienced. Recall the corre-
sponding pushovers were limited to 61== 20 °.

An elevator doublet for the Baseline case. 61== 0%

V = 100 kts =l.5Vs is presented in Figure 5. The ele-
vator is pulled trailing edge up (TEU, 6E decreased) at t

= 3.8 & 6.Is and pushed TED at 4.4 & 7.2s. For each
elevator deflection, the control force, FYE. remained

flat. The pitch rate response, q, peaked while the ele-
vator was held at an extrema, then started to recover

(diminish) belbre the elevator was moved. Note that in

general, the range excursions of N_, V, O, q, FYE and a,
are much smaller for the elevator doublet than the

pushover. The one exception to this is the C,, values:

the elevator input is typically sharper than for the push-

over, therefore, the response is correspondingly sharper.

The sharper elevator input is also the suspected cause

tbr the lessened correlation bctween _ and CH,,. The

tailplane response, ¢x,, lags bchind the Ctt,,/FYE input.
For comparison, an elevator doublet with the

Failed Boot ice shape at 6F = 20 ° and V = 1.0 Vs is

presented in Figure 6. Notc this is the same aircraft con-
2 .....

O ................

65 ......

o_ 55-

>

45 ............

15 ...... -- --

_ 5

•5 - "-

5 " ..-L.SdelE - 1¢

15 -10

14 - [_ delE_ T 30

1 0

C 0 06

_ __° _
I 0 -0 06

13 - ]--atpha]- 3

2 .... 1B

," • _ r ........ Crn

@ 777"- E°

1 'v .... 0 4

0 2 4 6 8 10 12 time 14

Figure 6. Elevator Doublet time histories for same
configuration and flight conditions as in Figure 4:
Failed Boot, 6F = 20 ° and V =55 kts = 1.0 Vs.

figuration and flight condition as that in Figure 4. Of

particular interest are the control force and pitch rate

responses. The FYE lightens and q is undamped for
each of the four elevator deflections. The minimum _,
for thc elevator doublet is about half that of the corre-

sponding pushover. Again, the ranges of all variables,

except C,,,, arc a fraction of thosc for the pushover.

Two Paths to Stall

In this section, the effects of increasing ice contamina-

tion and increasing flap deflection are analyzed. Analy-

ses include time history co-plots of 6E & FYE, which

rclate directly to the certification criterion for the push-

over, and _E & q, which is an important and relevant

comparison lbr the elevator doublet. Moreover, cross-

plots of N. vs. FYE and _E vs. q highlight the response

of the tailplane to a given input.

Effect of Ice Shape Severity

Co-plots of 6E & FYE lbr a pushover maneuver

with each of the four leading edge contamination cases

appear in Figure 7. The pushovers at 8F = 20 ° achieved

the same targets: N, = 0.2G (minimum possible) and V

= 50 kts = Vs (except the Residual Ice case, where V =
57 kts), and represent the most critical case for the

Failed Boot and S&C ice shapes. Here, the pushover
was defined to run from maximum N. to maximum N-.

The circles in Figure 7 mark thc elevator return TEU,

i.e.. the point when the elevator moved in the TEU di-

rection: they will be referenced again in Figure 11. One

can see (also from Figure 3) that this time period gener-

ally starts prior to the elevator deflecting TED, and in-

cludes the elevator returning TEU. Of interest is the

response of the control force with increasing ice shape

severity. For the Baseline case, FYE is essentially flat.

For the Residual Ice shape, FYE lightens substantially
belore the elevator is returned. The FYE actually

crosses the neutral point for both the Failed Boot and

S&C ice shapes: i.e., a CFR was experienced. The os-

cillalions in both the 6E and FYE profiles for the S&C

shape indicate the difficulty the pilot had holding the

elevator steady. The video that recorded the tufts on the

taiiplane indicates that this was due to unsteady separa-
tion and reattachment over the elevator.

Figure 8 depicts the corresponding 6£' & q plots for

comparison. With the Baseline and Residual lcc con-
figurations, the pitch response was damped: q peaks

near the middle of the elevator TED portion. For the

Failed Boot and S&C ice shapes, on the other hand, the

pitch response was undamped: q only ceased to increase
after the elevator was returned TEU. In fact. lot the

scores of maneuvers examined this trend held true. In

the Twin Otter, if the control force reversed, the pitch

rate response was also undamped.

NASA/TM----1999-208849 5
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Figure 7. Effect of increasing ice contamination sever-
ity on the control force reversal criterion. Pushovers at
SF = 20 °, N: = 0.2G, V = 50kts = Vs.
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Figure 8. Effect if increasing ice contamination sever-
ity on pitch rate response criterion. Same pushover data
as in Figure 7.

The elevator doublets allowed flight to even more

extreme configurations than the pushovers. The full

time histories in Figures 9 and t0 show control three

and pitch damping co-plots for SF = 30 ° and V = 85kts

= 1.6Vs with the various ice shapes. The progression

from control force lightening to reversal and the degra-

dation in the pitch rate response are well illustrated in

these plots. The starting elevator position (t = 0) indi-

cates the loss of elevator authority with increasing ice
severity: for the Baseline case, 6E0 = 6.7 °, for S&C,

<_E0 = -!.3 °.

A performance plot presented in REF. 1 is N. vs.

FYE. The data presented in Figure ! l a is the portion of

the pushovers presented in Figures 7 and 8 that began
(near IG flight) with the elevator deflecting TED and

ended at the minimum N:. Recall from Figure 7 that the
circles, mark when the elevator was returned TEU. For

I -90

15 90

o _o
[_Residual , , ,

Ice m

-15 -90

o o

o :::: ': ::' :
-15 ! ' ' +90

15 F ' 90

/ S&C
-15 _ ' ' ' " -90

o 2 4 6 8 10 12 lime 14

Figure 9. Effect of increasing ice contamination sever-
ity on the control force reversal criterion. Elevator dou-
blets at 5F = 30 °, V = 85 kts = 1.6 Vs.

15_ • ......deE- 15

u., ;......................_ _+++-", ++"L.....................................q :

o_ _ - _ -- o c_Baeeli "_''+/'ne_ + : : : : : :

L
-15 -15

_ Reeid
-15 -15

15 T + + _ - 15

t Failed Boot +

15 ' -15

-1 ' ' - 5

0 2 4 6 8 tO 12 I_lrllO 14

Figure 10. Effect of increasing ice contamination se-
verity on the pitch rate response criterion. Same eleva-
tor doublet data as in Figure 9.

the Baseline case, the force remained a push throughout

the flight to minimum N.., including the elevator's re-

turn TEU. The degradation with increasing ice shape
severity culminates with the S&C line. The control

force reversed before the plane went to 0.6G.

In Figure lib, the same data sequence is cross-

plotted with SE vs. q. Again, the elevator push starts

near q = O, and causes q to increase negatively. The

more interesting dynamics appear in the lower-right

quadrant. For the Baseline case, the short period re-

sponse is clear: while the elevator was fixed TED, the

pitch response peaked then subsided before the elevator
was restored TEU. For the Failed Boot case, on the

other hand, even after the elevator returned TEU more

than 10 °` the aircraft continued to pitch over at the near

constant rate of- 16 deg/s.
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Figure 11. Performance plots for the pushover with
increasing ice contamination severity. Same data source
as in Figures 7 and 8: 6F = 20 °. V = 50kts = lVs: (a)
FYE vs. N:, (b) q vs. 6E.

Effect of Flap Deflection

In addition to adding ice, another known path to tail

stall j'3 is increasing flap deflection. For a given ice

contamination, the Failed Boot shape, pushovers were

performed tbr 6[" = 0°. 10° and 20 °. Their time histories
are shown in Figure 12. The achieved targets were N-=

0G and V = I. 15Vs. It is clear that for SF = 0°, the con-

trol force remained flat during the elevator TED por-

tion. For SF = 10°, FYE lightened, almost to reversal.

For 6[ = 20 °, CFRs occurred for all three pushovers. In

fact, the pilot applied a control lbrce in excess of 100

Ibs to restore the elevator. Figure 13 shows the corre-

sponding pitch rate responses. As expected for tSF = 0 °.
the q trace indicates that the short period was excited

with the elevator push. For ¢_F = 10°, the peak q still
occurred while the elevator was held TED. For 8F =

20 °. however, the pitch response was clearly

undamped.

Similar plots were made in Figure 14 for the elevator
doublet with the Failed Boot ice shape and flap deflec-

tions from ¢_F = 0 ° to 30 °. The speed was V = 1.5Vs. In

addition to noting the loss of elevator authority, Figure
14 also demonstrates the stick lightening in the forward

direction. For nominally the same A6E = -6 ° deflection

TEU near t = 1.6s, the required pull force was a nomi-

nally constant 30 lbs for all flap deflections. On the

uJ 0 I _ __! _: _! i -- 0

........................................................................................................................... 50

'°F_ ..........Z 2 7-'_ 7-_ .......................7_°

.1 ............................................................................................ 513

t
.......... ., r _, _ ") ""' " 0 u_

.,o_-_ _v...... _! ........... _0
0 10 20 30 40 50 li_ 60

Figure 12. Effect of flap deflection on control force
criterion. Failed Boot shape, N- = 0G, V= 1.15Vs.

O __'f '''_ '-'5_-- _ _i""' ";:::_ ":......................... F' /i_'_fq':........ _i .. de_E_; oi0 Cr

4ok_ .............' ................2o
16

,oT_ Y<_ '-",. i 7. _[

10 ..................... 6

,_ ._ ........ _............... : ..... .] _o

_ 0 _ 0 _

-15 20

0 10 20 30 40 50 thl_ 60

Figure 13. Effect of flap deflection on pitch response
criterion. Same data source as in Figure 12.

other side, lor the nominally constant A6E = +9 ° de-
flection TED near t = 2.8s, the required control force

lightened considerably. For 6F = 0°, the push force was
-35 Ibs. For 5/" = 30 °, on thc other hand, the pilot only

applied -I1 lbs push force to move the elevator the
same distance. Moreover, immediately after that, the

control force continued to lighten and even reversed.

The pitch rate responses to increasing flap deflec-
tion with a contaminated tailplane are shown in Figure

15. Observe how q transitions from all four damped

responses at 6F = 0 °, to all undamped responses at
51: = 30°.
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Figure 14. Effect of flap deflection on elevator dou-
blets with Failed Boot ice shape and V = 1.5Vs: Control
force criterion.
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Figure 15. Effect of flap deflection on elevator dou-
blets with Failed Boot ice shape and V = 1.5Vs: pitch
rate response.

Repeatability Analysis
One of the key questions regarding the pushover is how
precisely it must be flown. If. for example, a test point

tor the pushover is flown three knots below the lowest

target speed and a control force reversal is experienced,
should the aircraft be certified if it would have passed at

the target speed'? What if the point is flown three knots
too fast'? In general, what magnitude of error is toler-
able, and what is not'? The research conducted tor the

NASA/FAA Tailplane Icing Program can report on, and
only on, how closely one pilot was able to achieve the
target conditions in the modified DHC-6 test aircraft.

The nature in which these pushovers were flown -
three pushovers to the same targets per test point -

allow for such a repeatability analysis. With these flight

tests, an error analysis may now be made. Presented
herein is a detailed description of the analysis and re-
sults from both a non-critical and critical configuration.

Description of the Repeatability Analysis

One way to accomplish a repeatability study is a point

by point comparison between the three maneuvers. That

is, to superimpose all three maneuvers on a common
time axis. The time index for each maneuver would be

scaled to run from zero to unity, t,,,_,, _ [0,1] (see

Figure 16). To achieve this, the first task was to pre-
cisely define a "maneuver". A choice was made that the

vertical acceleration N: would be the governing factor."

A maneuver was defined to begin and end with the pull-

up, i.e., from maximum N. to maximum N.. It also be-
came apparent that the time of the minimum N: location

needed to be specified. Otherwise. it might appear any-
where from 50 to 80% of the total maneuver time. The

optimal place to fix N:_,,, is the average location of the

maneuvers under consideration. For this example, it
was set to 50%. The procedure to define the time axis i.,_

1 ) Find the actual times of the two N=,,,,, to & h, to
determine the period T.

2) Find the actual time ofN.. ,,;,.
3) To fix the scaled time of N:__,,,,,at 0.5, subtract 0.5T

from the actual IV:_,,,, time to find the new start

time. Add the total period to the start time to find
the new end time.

4) With the new bounds of the maneuver determined,

the scaled time becomes t,,,_ = (t-to)/(trto).

Such a collapse of the N:, V and 0 target data is

presented for both a non-critical and a critical pushover.

Figure 16 depicts the same non-critical configuration

presented in Figure 3: Residual Ice, &F = 0°, V = 1.5Vs.

The thin lines represent the scaled version of the data

presented at the times indicated (e.g., 14 - 28 seconds).

Figure 17 depicts the Failed Boot, 6F = 20 °, V = 1.0Vs

case. The corresponding data appears in Figure 4 from

43 - 55 seconds and in Figure 7.

Once the traces are synced and scaled, statistical
analyses may now be performed. To make the task of

directly comparing all three scaled time traces more

manageable, the time axis was subdivided into equal-
time 'bins'. For this exercise, the number of maneuvers

N,,,,,, = 3, the number of bins Nb_ = 20 which left about

N,i: = 70 data points per bin. Let the term Q(i.j,k) iden-

tify the i th point of the j_h maneuver in the k th bin for a

quantity Q. The first step is to average each maneuver
within a bin.

-Q(j,k)= N/-_--_Q(i,j,k )
mz i:l

* This choice of an output parameter was based on the fact that the

criteria for the pushover maneuver is written to this parameter, and
that it has obvious demarcations between maneuvers. Another choice

might have been the input parameter, elevator deflection. However,

this choice was not "'clean" in that the elevator moved differently for
different configurations, more decisions would have to be made.
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Figure 16. Three maneuvers (thin lines) and their aver-
age (thick line) vs. scaled time for Residual Ice, 6/" =0 °,

V =100 kts = 1.5Vs test point. Error bars and -s,, aver-
aging region are indicated.

Next, those average values tbr each maneuver are aver-

aged within the bin, creating a bin average. Q(k).

Nma,

Q( k ) - N ....... j=/

In the figures, the bin average for each quantity is rep-
resented with the thick line. The standard deviation of

each bin, s(k), comes from the three diflerences be-

tween each trace average and the overall average.

F--. N,..,, [-- .k =_k ,]//2
,(k)=/2.;,, LQ( J. )-U( ))"

= N,... - / ]
The final error, g, is the average of all of the bins.

/ N¢'": =--___s(k )
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........ 2938s
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Figure 17. Three maneuvers (thin lines) and their aver-

age (thick line) vs. scaled time for Failed Boot. 6/" =

20 °, V = 50 kts = 1.0Vs test point. Error bars and ,_',,_

averaging region are indicated.

To isolate the target portion of the maneuver and elimi-

nate the entry and exit variations, the values centered

around the IV:,,,,, bin can be averaged. The quantity 7_-....

is defined similarly to _. but only averaged over the

immediate target neighborhood. Let ko define the bin

which contains N:_,,,i,,, and n define the number of bins

in the neighborhood.

kt_+_

-s m,- = -- s( k )
II

k=k.-_

For the non-critical case in Figure 16, k(_= 0.5, n = 6:

for the critical case in Figure 17, k0 = 0.65. n = 6. These
neighborhoods are shown in the figures with a thick

dashed line. TheS,,,_ values arc listed in Table I. As can

be seen from the figures and table, the pilors ability to
repeat the target portions of the maneuver were gener-

ally tighter for the non-critical case than the critical

case. For both cases, the pilot's ability to achieve the N-
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waswithinabout+ 0.1G precision. Around the target

velocity, however, the tolerances for the critical case

were actually better than for the non-critical case. For

the overall velocity error, 7, on the other hand, the

opposite was true. The pitch attitude seemed to be the

most difficult target to achieve. The pitch repeatability
tor the critical case was more than double that of the

non-critical case.

Configuration: RI FB

Ice Shape, d_F, 0° 20°
V/Vs 1.5 1.0

Nz(G) 0.12 0.08

VIAS (kts) 4.2 2.8

theta (deg) 2.8 8.3

Table 1. Repeatability analysis -_,,,r precision levels
within both a non-critical and critical configuration tor
the pushover maneuver.

With a bin average value established, the accuracy

of achieving the targets may now be addressed. The

accuracy shall be defined as the difference (Dif) be-

tween the average of the ko bin and the target quantity,

IQ(ko)- Q,,_e_,I. These values are presented in Table 2.

Again, the greatest difficulty occurred in meeting the
pitch angle at the minimum N:. Otherwise, these results

suggest that the pilot should be able to achieve the tar-

gets to roughly the same degree of accuracy and preci-

sion regardless of the level of ice contamination.

Configura- RI, tSF =0 °. V= 1.5Vs

tion: Actual Target Dif
Nz (G) 0.07 0 0.07

VIAS (kts) 108 100 8

theta (deg) -6.5 3.3 -9.8 .....

Configura- FB, t_F =20 °, V=1.0Vs

tion: Actual Target Dif
Nz (G) 0.24 0.17 0.07

VIAS (kts) 55 55 0

theta (deg) -14 1.8 -15.8

Table 2. Accuracy of achieving the target values for

both non-critical and critical pushover cases.

Conclusions

A detailed study of two maneuvers, the pushover and
elevator doublet, has been made. These maneuvers

were performed during the NASA/FAA Tailplane Icing

Program, which was designed to better understand ice-

contaminated taiiplane stall. This series of flight tests
was flown in a modified DHC-6 Twin Otter with artifi-

cial ice shapes attached to the leading edge of the hori-
zontal stabilizer.

The degradation of longitudinal stability and con-

trol was considered primarily through the control force

criterion used for certification. The degradation due to

increasing ice contamination severity and increasing

flap deflection was documented. It was also tbund that

the pitch rate response is another good indicator of the

longitudinal stability and control degradation.

This research program also allowed for a repeatability

analysis of the pushover maneuver. A method was de-

veloped to evaluate the precision and accuracy of one

pilot's ability in one aircraft to achieve the required

target parameters of N:, V and 0. In addition to the

numbers given in Tables I and 2, these results suggest

that the level of ice contamination did not substantially

affect the pilot's ability to achieve the target

parameters.
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